On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo

نویسندگان

  • Niladri S. Chatterji
  • Nicolas Flammarion
  • Yi-An Ma
  • Peter L. Bartlett
  • Michael I. Jordan
چکیده

We provide convergence guarantees in Wasserstein distance for a variety of variance-reduction methods: SAGA Langevin diffusion, SVRG Langevin diffusion and control-variate underdamped Langevin diffusion. We analyze these methods under a uniform set of assumptions on the log-posterior distribution, assuming it to be smooth, strongly convex and Hessian Lipschitz. This is achieved by a new proof technique combining ideas from finite-sum optimization and the analysis of sampling methods. Our sharp theoretical bounds allow us to identify regimes of interest where each method performs better than the others. Our theory is verified with experiments on real-world and synthetic datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Gradient Hamiltonian Monte Carlo with Variance Reduction for Bayesian Inference

Gradient-based Monte Carlo sampling algorithms, like Langevin dynamics and Hamiltonian Monte Carlo, are important methods for Bayesian inference. In large-scale settings, full-gradients are not affordable and thus stochastic gradients evaluated on mini-batches are used as a replacement. In order to reduce the high variance of noisy stochastic gradients, [Dubey et al., 2016] applied the standard...

متن کامل

Variance Reduction in Stochastic Gradient Langevin Dynamics

Stochastic gradient-based Monte Carlo methods such as stochastic gradient Langevin dynamics are useful tools for posterior inference on large scale datasets in many machine learning applications. These methods scale to large datasets by using noisy gradients calculated using a mini-batch or subset of the dataset. However, the high variance inherent in these noisy gradients degrades performance ...

متن کامل

Stochastic Variance-Reduced Hamilton Monte Carlo Methods

We propose a fast stochastic Hamilton Monte Carlo (HMC) method, for sampling from a smooth and strongly log-concave distribution. At the core of our proposed method is a variance reduction technique inspired by the recent advance in stochastic optimization. We show that, to achieve accuracy in 2-Wasserstein distance, our algorithm achieves Õ ( n+ κd/ + κdn/ 2/3 ) gradient complexity (i.e., numb...

متن کامل

SGD with Variance Reduction beyond Empirical Risk Minimization

We introduce a doubly stochastic proximal gradient algorithm for optimizing a finite average of smooth convex functions, whose gradients depend on numerically expensive expectations. Our main motivation is the acceleration of the optimization of the regularized Cox partial-likelihood (the core model used in survival analysis), but our algorithm can be used in different settings as well. The pro...

متن کامل

Control Variates for Stochastic Gradient MCMC

It is well known that Markov chain Monte Carlo (MCMC) methods scale poorly with dataset size. We compare the performance of two classes of methods which aim to solve this issue: stochastic gradient MCMC (SGMCMC), and divide and conquer methods. We find an SGMCMC method, stochastic gradient Langevin dynamics (SGLD) to be the most robust in these comparisons. This method makes use of a noisy esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.05431  شماره 

صفحات  -

تاریخ انتشار 2018